新型放射性治疗药物。

转移性去势抵抗性前列腺癌治疗药物¹⁷⁷Lu-PSMA-I&T的对比研究

刘欢欢 张晓军 潘越 张靖峰 孙树伟 张锦明 解放军总医院第一医学中心核医学科,北京 100853 通信作者:张锦明, Email: zhangjm301@163.com

【摘要】 目的 评估¹⁷⁷ Lu-前列腺特异膜抗原(PSMA)-30 在转移性去势抵抗性前列腺癌 (mCRPC)治疗中的潜力,并与¹⁷⁷Lu-PSMA-I&T进行比较。方法 制备¹⁷⁷Lu-PSMA-3Q并进行质量控 制和稳定性检测;对¹⁷Lu-PSMA-3Q、¹⁷⁷Lu-PSMA-I&T在正常 BALB/c 小鼠和 22Rv1 荷瘤鼠体内进行 药代动力学评价及生物分布研究:对2 例来自解放军总医院的 mCRPC 患者(60 岁和 76 岁)分别静 脉注射¹⁷⁷Lu-PSMA-3Q、¹⁷⁷Lu-PSMA-I&T (7.40±0.74) GBg 后 24、72、120 h 进行 SPECT 显像。采用两 独立样本 t 检验分析数据。结果 制备得到的¹⁷⁷Lu-PSMA-3Q 总活度为 74 GBq,未校正产率为 95%, 室温放置 168 h 后放化纯仍大于 95%。177 Lu-PSMA-3Q 和177 Lu-PSMA-I&T 的分布半衰期分别为(0.75± 0.22)和(0.86±0.19)min,清除半衰期分别为(24.74±3.77)和(29.53±3.42)min。正常小鼠生物分布 结果示,注射后 5 d¹⁷⁷Lu-PSMA-3Q 在肝、肺、肾中的摄取值明显低于¹⁷⁷Lu-PSMA-I&T(t 值:4.24~ 8.36,均 P<0.05)。22Rv1 荷瘤鼠生物分布结果示,¹⁷⁷Lu-PSMA-3Q 在注射后 24 h 的肿瘤摄取最高, 且高于¹⁷⁷Lu-PSMA-I&T「(0.856±0.183)与(0.579±0.126)每克组织百分注射剂量率(%ID/g);t= 2.78, P=0.024]; 快速的清除模式使¹⁷⁷Lu-PSMA-3Q 有着高肿瘤/肌肉比值(99.604±11.106), 且明显 高于¹⁷⁷Lu-PSMA-I&T的摄取比值(45.078±10.444;t=7.80,P<0.001)。在患者 SPECT 显像中,¹⁷⁷Lu-PSMA-3Q 和¹⁷⁷Lu-PSMA-I&T 120 h 的病灶残余计数分别占 24 h 的 0.32±0.04 与 0.58±0.04,差异有统 计学意义(t=7.62, P=0.002)。结论 ¹⁷⁷Lu-PSMA-3Q标记简便, 产率和放化纯高, 稳定性好, 具有良 好的生物学性能,患者体内靶向性好,滞留时间较长,背景清除速率快,是较理想的靶向 PSMA 的前 列腺癌治疗药物。

【关键词】 前列腺肿瘤;前列腺特异膜抗原;同位素标记;镥;放射性核素显像;小鼠,裸 DOI:10.3760/cma.j.cn321828-20240321-00110

Comparative study of ¹⁷⁷Lu-PSMA-3Q and ¹⁷⁷Lu-PSMA-I&T for metastatic castration-resistant prostate cancer

Liu Huanhuan, Zhang Xiaojun, Pan Yue, Zhang Jingfeng, Sun Shuwei, Zhang Jinming Department of Nuclear Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853,

Corresponding author: Zhang Jinming, Email: zhangjm301@163.com

China

[Abstract] Objective To evaluate the potential of ¹⁷⁷Lu-prostate specific membrane antigen (PSMA)-3Q in the treatment of metastatic castration-resistant prostate cancer (mCRPC) and compare it with ¹⁷⁷Lu-PSMA-I&T. Methods ¹⁷⁷Lu-PSMA-3Q was prepared and the quality control and stability testing were performed. Pharmacokinetic evaluation and biodistribution of ¹⁷⁷Lu-PSMA-3Q and ¹⁷⁷Lu-PSMA-I&T were conducted in normal BALB/c mice and 22Rv1 tumor-bearing mice. SPECT imaging was performed on 2 patients (60 and 76 years old) with mCRPC from Chinese PLA General Hospital at 24, 72, and 120 h after injection of ¹⁷⁷Lu-PSMA-3Q or ¹⁷⁷Lu-PSMA-I&T ((7.40±0.74) GBq). Data were analyzed by using independentsample t test. Results ¹⁷⁷ Lu-PSMA-3Q was prepared with the total activity of 74 GBq, the yield rate of 95% (uncorrected), and the radiochemical purity was still above 95% after 168 h at room temperature. The distribution half-lives of ¹⁷⁷Lu-PSMA-3Q and ¹⁷⁷Lu-PSMA-I&T were (0.75±0.22) and (0.86±0.19) min, and the clearance half-lives were (24.74 ± 3.77) and (29.53 ± 3.42) min. Biodistribution of normal mice showed that the uptake values in the liver, lungs, and kidneys 5 d after injection of ¹⁷⁷Lu-PSMA-3Q were lower than those of ¹⁷⁷Lu-PSMA-I&T (t values: 4.24-8.36, all P<0.05). The tumor uptake of ¹⁷⁷Lu-PSMA-3Q after 24 h injection was the highest and was higher than that of $^{177}\mbox{Lu-PSMA-I&T}$ ((0.856±0.183) vs (0.579 ± 0.126) percentage activity of injection dose per gram of tissue (%ID/g); t=2.78, P=0.024) in 22Rv1 tumor-bearing mice. The rapid clearance pattern resulted in a higher tumor/muscle (T/M) ratio for 177 Lu-PSMA-3Q (99.604±11.106), which was significantly higher than that for 177 Lu-PSMA-I&T (45.078±

10.444; t = 7.80, P < 0.001). According to SPECT imaging of patients with mCRPC, the residual lesion counts of ¹⁷⁷Lu-PSMA-3Q and ¹⁷⁷Lu-PSMA-I&T at 120 h accounted for 0.32 ± 0.05 and 0.58 ± 0.04 of those at 24 h, with significant difference (t = 7.62, P = 0.002). **Conclusion** ¹⁷⁷Lu-PSMA-3Q is easy to label, and has high yield and radiochemical purity, good stability, excellent biological performance, good targeting ability in patients, longer retention time, and fast background clearance rate, which is an ideal prostate cancer treatment drug targeting PSMA.

[Key words] Prostatic neoplasms; Prostate-specific membrane antigen; Isotope labeling; Lutetium; Radionuclide imaging; Mice, nude

DOI:10.3760/cma.j.cn321828-20240321-00110

前列腺癌是世界上第二大男性恶性肿瘤,也是 男性癌症死亡的第五大原因。2020年,全球有近 140万新发病例和37.5万死亡病例^[1]。前列腺特异 膜抗原(prostate specific membrane antigen, PSMA) 在健康组织中低表达,是治疗前列腺癌的理想靶 点^[2]。使用靶向 PSMA 的放射性标记配体进行放 射配体治疗(radioligand therapy, RLT)已成为诊断 和治疗转移性去势抵抗性前列腺癌(metastatic castration-resistant prostate cancer, mCRPC)的一种有前 景的策略^[3],其具有精准、高效、不良反应小、诊疗 一体化等优势。目前,最常用的靶向 PSMA 的 RLT 使用的放射性药物是¹⁷⁷Lu-PSMA-617和¹⁷⁷Lu-PSMA-I&T^[4]。

笔者团队通过临床前评估多种新型⁶⁸ Ga/¹⁷⁷ Lu标记 PSMA 配体的诊疗效果,以及¹⁸ F标记 PSMA-3Q 的初步临床应用,最终筛选出¹⁷⁷ Lu-PSMA-3Q,其具有最高的亲和力和优异的药代动力学特性,并且有着令人满意的肿瘤抑制效果^[5-8]。本研究将进一步评估¹⁷⁷ Lu-PSMA-3Q 在 PSMA 阳性肿瘤小鼠以及正常小鼠中的生物分布和代谢动力学,并与¹⁷⁷ Lu-PSMA-I&T 在相同剂量学方案下接受 PSMA RLT的mCRPC 患者的安全性、体内分布和代谢动力学方面进行比较。

材料与方法

一、主要实验耗材与仪器

1.实验动物。BALB/c小鼠:雄性,16只,4~6周龄,体质量18~22g,无特定病原体(specific pathogen free, SPF)级,江苏集萃药康生物科技股份有限公司,实验动物许可证号:SCXK(苏)2023-0009。荷22Rv1 (PSMA 阳性表达)前列腺癌裸鼠:30只,7~8周龄,体质量23~28g,肿瘤大小200~300 mm³,SPF级,浙江维通利华实验动物技术有限公司,实验动物许可证号:SCXK(浙)2024-0001。所有动物实验根据解放军总医院第一医学中心实验动物管理委员会批准的方案进行。

2.实验试剂。前体 PSMA-3Q 由派特(北京)科

技有限公司提供;抗坏血酸、聚乙二醇、氨基聚醚 (K_{2.2.2})购自德国 ABX 公司;无水乙腈和碳酸钾购 自美国 Sigma-Aldrich 公司;Light QMA、SPE C18 柱 购自美国 Waters 公司;H₂¹⁸O(丰度 98%)购自江苏 华益化工有限公司;其他试剂均为国产分析纯。

3.实验仪器。高效液相色谱(high performance liquid chromatography, HPLC) 仪购自美国 Waters 公司, 分析柱 Phenomenex Gemini 5 μm 100A C18(4.6 mm× 150 mm), BioScan 流动放射性检测器; 内毒素快速 检测仪(PTS) 购自美国 Charles river 公司; γ 计数仪 购自芬兰 Hidex 公司; SPECT/CT(Discovery NM/CT 670 CZT) 购自美国 GE 公司; 离心机购自北京时代 北利离心机有限公司; 旋涡混匀器购自北京北方同 正生物技术发展有限公司。

二、实验方法

1. ¹⁷⁷Lu-PSMA-3Q 的制备。向装有 40 μg 前体的 10 ml 冻干瓶中加入 10 mg 抗坏血酸、0.9 ml 0.05 mol/L 高纯盐酸、68 μl 1 mol/L 乙酸钠,再加入 370 MBq/ 100 μl ¹⁷⁷LuCl₃,混匀后置于 85 ℃加热 30 min,冷却 后加入 1 ml 含 20 μg 喷替酸的生理盐水,混匀后取 出通过无菌过滤器至无菌瓶,得到终产品。

2.¹⁷⁷Lu-PSMA-3Q的质量控制及稳定性检测。 铅屏风后观察产品颜色及澄清度;利用精密 pH 试 纸测量 pH 值;利用分析型 HPLC 测量放化纯:流动 相为含有体积分数 0.4%磷酸和体积分数 12%乙腈, 流速为 1 ml/min。将收集到的产品¹⁷⁷Lu-PSMA-3Q 置于室温下,分别在 1、4、12、24、72、120、168 h 取样 测定其放化纯。

3.脂水分配系数测定。在 15 ml 离心管中加入 2.9 ml PBS(0.1 mol/L, pH=7.4)和 3 ml 正辛醇, 再 将 100 μ l 约 14.8 MBq 的产品加入其中。在室温下 使用漩涡混匀器将离心管中的混合物旋涡 2 min 使 其充分混合,随后在室温下离心(有效离心半径 12 cm, 3 000 r/min) 5 min。充分静置使其分层后, 分别从 各层取 3 份 500 μ l 样品, 使用自动化 γ 计数仪测定 各样品的放射性计数(counts per minute, CPM), 计 算 脂 水 分 配 系 数 logD_{pH=7.4} = log (CPM_{正辛醇}/ $(CPM_{PBS})_{\circ}$

4.正常小鼠的药代动力学实验。取 6 只健康 BALB/c 雄性小鼠,将其按随机数字表法分为 2 组(每 组 3 只),分别经尾静脉注射¹⁷⁷Lu-PSMA-3Q、¹⁷⁷Lu-PSMA-I&T(0.74 MBq,150 μl),于注射后 2、5、10、 15、30、60、90、120 min 经断尾取血(5 μl×3),使用 γ 计数仪测定血液中放射性活度并换算为血液放射性 浓度(kBq/ml)。使用药代动力学软件 WinNonlin (美国 Certara 公司)中二房室模型对小鼠的时间-血 液放射性浓度数据进行分析,得出放射性药物在小 鼠体内的分布和清除半衰期参数。

5.正常小鼠的放射性药物排泄实验。取 10 只 健康 BALB/c 雄性小鼠,将其按随机数字表法分为 2 组(每组 5 只),分别经尾静脉注射¹⁷⁷ Lu-PSMA-3Q、¹⁷⁷ Lu-PSMA-I&T(3.7 MBq,100 μ l),于注射后第 1、2、3、4、5 天使用活度计测量小鼠体内残留放射性 活度,经过计算得出小鼠体内放射性药物排泄百分 比。5 d 后处死小鼠,收集各组织、器官后使用电子 天平测质量(g),再使用 γ 自动计数仪测量放射性 计数,进行时间衰减校正后计算每克组织百分注射 剂量率(percentage activity of injection dose per gram of tissue, %ID/g)。

6.荷瘤鼠的生物分布。取 30 只 22Rv1 荷瘤鼠,将 其按随机数字表法分为 2 组(每组 15 只),分别经尾静 脉注射¹⁷⁷ Lu-PSMA-3Q、¹⁷⁷ Lu-PSMA-I&T(3.7 MBq, 200 μl)。于注射后 24、72 和 120 h 各处死 5 只荷瘤 鼠并收集肿瘤和主要组织、器官,分别测质量(g)后 用 γ 自动计数仪测量放射性计数,进行时间衰减校 正后计算各组织器官放射性摄取率(%ID/g)。

7.初步临床评价。本研究已通过解放军总医院 伦理委员会批准(伦审第 S2023-295-01 号),受试者 均签署知情同意书。入选者来自 2023 年 6 月 1 日 至 2024 年 5 月 31 日间解放军总医院门诊和(或)住 院患者。纳入标准:(1)年龄大于 40 岁小于 80 岁; (2)常规治疗失败后 mCRPC 病情持续进展;(3)¹⁸F-PSMA-3Q PET/CT 扫描结果为阳性,浓集的病灶数 不多于 10 个,不少于 2 个,且 2 个以上肿瘤/肝的 SUV 比值大于 2;(4)有足够的骨髓储备和较好的 肝、肾功能(WBC>3.0×10⁹/L,PLT 计数>75×10⁹/L, 血清肌酐和主要肝酶水平不高于正常参考值上限的 2 倍和 5 倍);(5)无尿路梗阻。排除标准:(1)既往 接受过 PSMA 靶向放射性药物治疗;(2)¹⁸F-PSMA-3Q PET/CT 扫描结果为阴性或阳性浓集灶大于 10 个, 或 3 个肿瘤/肝的 SUV 比值小于 2;(3)计划在治疗 期及后续6个月内有生育计划者。最终有2例受试 者(60岁和76岁)入组,分别静脉注射¹⁷⁷Lu-PSMA-3Q 或¹⁷⁷Lu-PSMA-I&T[给药剂量为(7.40±0.74) GBq]后, 进行毒性不良反应的观察,并在注射后24、72、120 h 应用 SPECT/CT 仪采集全身图像,共采集120 帧,每 帧 30 s,总采集时间 20 min。由2名主治医师级别 以上经验丰富的医师勾画 ROI,提取不同时间点 (24、72、120 h)采集到的最大计数。

8.统计学处理。采用 IBM SPSS 26.0 和 Graph-Pad Prism 9.0 软件进行统计学分析。符合正态分布 的定量资料以 $\bar{x}\pm s$ 表示,2 组间比较采用两独立样 本 t 检验。P<0.05 为差异有统计学意义。

结 果

1. ¹⁷⁷Lu-PSMA-3Q的制备、质量控制、稳定性及 脂水分配系数。成功获得放射性标记产率>95% (未校正)的¹⁷⁷Lu-PSMA-3Q,终产品为无色澄清溶 液,pH为6.0~6.5,放射性浓度为740 MBq/ml,总活 度为74 GBq,未校正产率为95%。室温放置168 h 后,放化纯仍大于95%,未见分解或解离。脂水分 配系数测定结果表明产品为亲水性,且¹⁷⁷Lu-PSMA-3Q(logD_{pH=7.4}=-3.92±0.08)的亲水性略高于¹⁷⁷Lu-PSMA-I&T(logD_{pH=7.4}=-3.74±0.18)。

2.正常小鼠体内的药代动力学。¹⁷⁷ Lu-PSMA-3Q 和¹⁷⁷ Lu-PSMA-I&T 的分布半衰期分别为(0.75±0.22) 和(0.86±0.19) min,清除半衰期分别为(24.74± 3.77)和(29.53±3.42) min,可见¹⁷⁷ Lu-PSMA-3Q 在 小鼠体内清除速率略快于¹⁷⁷ Lu-PSMA-I&T。

3.正常小鼠体内的生物分布及排泄。小鼠注 射¹⁷⁷Lu-PSMA-3Q 后的第 1 天排泄百分比均值达 96%,略快于¹⁷⁷Lu-PSMA-I&T 的 94%;随着时间的延 长,2 种放射性药物排泄百分比趋于一致,于第 5 天 均达 99%(图 1)。注射后 5 d,虽 2 组在正常组织、 器官中均显示出极低的残余摄取,但¹⁷⁷Lu-PSMA-3Q 在肝、肺、肾中的摄取值明显低于¹⁷⁷Lu-PSMA-3Q 在肝、肺、肾中的摄取值明显低于¹⁷⁷Lu-PSMA-1&T [$F_{:}(0.34\pm0.06)$ 与 (0.63 ± 0.14) %ID/g,t=4.24,P= 0.003; $h_{:}(0.12\pm0.03)$ 与 (0.28 ± 0.03) %ID/g,t= 8.36,P<0.001); $F_{:}(0.13\pm0.01)$ 与 (0.84 ± 0.22) %ID/g,t= 7.27,P<0.001],在脾脏中略低于¹⁷⁷Lu-PSMA-I&T [(0.61 ± 0.19) 与 (0.84 ± 0.17) %ID/g;t=2.10,P= 0.069];在骨组织中高于¹⁷⁷Lu-PSMA-I&T[(0.45 ± 0.03) 与 (0.28 ± 0.01) ;t=4.45,P=0.002]。

4.荷瘤鼠的生物分布(表1)。¹⁷⁷Lu-PSMA-3Q在注射后24 h的肿瘤摄取最高,且高于相应时间点¹⁷⁷Lu-

图 1 BALB/c小鼠注射¹⁷⁷Lu-前列腺特异膜抗原(PSMA)-3Q 和¹⁷⁷Lu-PSMA-I&T 后不同时间点的排泄百分比。每组 5 只小鼠

PSMA-I&T 在肿瘤中的摄取(t=2.78, P=0.024);在 正常器官中,¹⁷⁷Lu-PSMA-3Q 在脾脏表现出最高的 吸收,其次是肾脏与肝脏;而其他组织器官均表现出 极低的放射性积累和快速清除。快速的清除模式导 致注射¹⁷⁷Lu-PSMA-3Q 后 24 h 高肿瘤/肌肉(tumor/ muscle, T/M)比值,且明显高于¹⁷⁷Lu-PSMA-I&T(t=7.80, P<0.001);但注射后 120 h,¹⁷⁷Lu-PSMA-3Q 的 T/M 比值与¹⁷⁷Lu-PSMA-I&T 差异无统计学意义(t=1.22, P=0.270)。

5.¹⁷⁷Lu-PSMA-3Q的初步临床评价。2 例患者 在注药后均未观察到不良反应或生命体征的显著变 化。全身 SPECT 显像提示¹⁷⁷Lu-PSMA-3Q 及¹⁷⁷Lu-PSMA-I&T 对病灶靶向性好,能快速聚集在病灶处, 且滞留时间长,软组织摄取低,靶与非靶比值高,两 者均主要由泌尿系统代谢,肝脏、脾脏摄取较低,唾 液腺为正常生理性摄取(图 2)。ROI 的放射性计数 结果显示,¹⁷⁷Lu-PSMA-3Q 及¹⁷⁷Lu-PSMA-I&T 均显 示出快速的肾脏清除和较高的肿瘤摄取与较长的滞 留时间,¹⁷⁷Lu-PSMA-3Q 注射后 24 h 便具有较高的 瘤内摄取(140.67±16.26),注射后 72、120 h 依然可 以观察到病灶的摄取;¹⁷⁷Lu-PSMA-3Q 与¹⁷⁷Lu-PSMA-I&T 的 72、120 h 病灶残余计数分别占 24 h 的 0.62± 0.13 与 0.44±0.11、0.32±0.04 与 0.58±0.04,72 h 的 差异无统计学意义(t=1.78,P=0.151),120 h 的差 异有统计学意义(t=7.62,P=0.002)。在正常器官 中,¹⁷⁷Lu-PSMA-3Q 与¹⁷⁷Lu-PSMA-I&T 的排泄速率具 有一定差异,与¹⁷⁷Lu-PSMA-I&T 相比,¹⁷⁷Lu-PSMA-3Q 在肝、肾、唾液腺等重要脏器中具有更快的背景清除 速率,这可能为前列腺癌患者 PSMA RLT 降低不良反 应,如可以适当降低口干综合征的发生。

讨 论

转移性前列腺癌患者经药物去势或手术去势后 会经过1~2年的激素敏感期,之后绝大部分患者的 去势治疗效果逐渐丧失,患者的血清前列腺特异抗 原会持续升高并出现新的转移病灶,疾病最终进展 为mCRPC。mCRPC已属疾病晚期,是临床治疗的 难点,姑息性手术、试验性局部治疗、外放射治疗、内 分泌治疗、化疗等对mCRPC患者的预后及生活质 量的提高效果有限^[9]。

PSMA 在肿瘤和非肿瘤组织中的表达差异产生 了许多靶向策略,涉及疾病的放射诊断分期和治疗 干预,其对前列腺癌患者是一个非常重要的诊断和 治疗靶点^[10]。靶向放射性核素治疗(targeted radionuclide therapy, TRT)是近距离放射治疗的一种, TRT使用α核素、β核素等与靶向药物(如小分子

表1 注射¹⁷⁷Lu-PSMA-3Q 和¹⁷⁷Lu-PSMA-I&T 后不同时间在 22Rv1 荷瘤鼠中的生物分布(%ID/g;x±s)

器官或组织 —	¹⁷⁷ Lu-PSMA-3Q			¹⁷⁷ Lu-PSMA-I&T		
	24 h	72 h	120 h	24 h	72 h	120 h
血液	0.024 ± 0.003	0.009 ± 0.002	0.007 ± 0.001	0.008 ± 0.000	0.007 ± 0.003	0.005 ± 0.001
脑	0.006 ± 0.001	0.004 ± 0.001	0.004 ± 0.002	0.007 ± 0.002	0.005 ± 0.001	0.004 ± 0.002
肝	0.197 ± 0.037	0.065 ± 0.015	0.036 ± 0.010	0.202 ± 0.049	0.130 ± 0.026	0.069 ± 0.023
脾	0.308 ± 0.129	0.103 ± 0.051	0.048 ± 0.009	0.386±0.110	0.161 ± 0.004	0.108 ± 0.044
肾	0.234 ± 0.044	0.090 ± 0.017	0.032 ± 0.003	2.157±0.780	0.543 ± 0.108	0.216 ± 0.114
胃	0.022 ± 0.021	0.012 ± 0.004	0.006 ± 0.001	0.029 ± 0.010	0.016 ± 0.006	0.011 ± 0.005
唾液腺	0.021 ± 0.003	0.013 ± 0.005	0.011 ± 0.001	0.029 ± 0.008	0.023 ± 0.006	0.016 ± 0.005
小肠	0.035 ± 0.021	0.015 ± 0.008	0.017 ± 0.006	0.039 ± 0.021	0.021 ± 0.007	0.024 ± 0.012
心	0.011 ± 0.001	0.008 ± 0.001	0.007 ± 0.001	0.014 ± 0.001	0.010 ± 0.001	0.009 ± 0.002
肺	0.045 ± 0.028	0.031 ± 0.007	0.021 ± 0.004	0.086 ± 0.024	0.081 ± 0.047	0.048 ± 0.032
骨	0.060 ± 0.010	0.056 ± 0.017	0.052 ± 0.016	0.076 ± 0.008	0.074 ± 0.007	0.051 ± 0.006
肌肉	0.009 ± 0.002	0.009 ± 0.001	0.007 ± 0.002	0.014 ± 0.005	0.011 ± 0.004	0.010 ± 0.005
肿瘤	0.856 ± 0.183	0.413±0.169	0.156 ± 0.087	0.579 ± 0.126	0.173 ± 0.033	0.104 ± 0.035
T/M	99.604±11.106	48.021±24.974	20.614±6.010	45.078±10.444	20.431±10.195	13.530±9.991

注:每个时间点小鼠数量均为5只;%ID/g为每克组织百分注射剂量率,PSMA为前列腺特异膜抗原,T/M为肿瘤/肌肉

图 2 转移性去势抵抗性前列腺癌患者¹⁷⁷Lu-前列腺特异膜抗原(PSMA)-3Q及¹⁷⁷Lu-PSMA-I&T SPECT 显像图。A.患者[60岁,前 列腺特异抗原(PSA)=17.49 µg/L]¹⁷⁷Lu-PSMA-3Q 治疗后 24 h 全身显像可见左侧锁骨、左侧肱骨、右侧肱骨、右侧股骨多处高浓 聚灶,提示靶向性好,72 和 120 h 可见非靶组织摄取逐渐清除,病灶浓聚依然较高,提示滞留时间长;B.患者(76岁,PSA=34.94 µg/L)¹⁷⁷Lu-PSMA-I&T 治疗后 24 h 全身显像可见左侧锁骨头、左侧髂骨、右侧股骨高浓聚灶,提示靶向性好,72 和 120 h 可见非靶组织摄 取逐渐清除,病灶浓聚依然较高,提示滞留时间长

配体、肽或抗体)结合,开启了肿瘤靶向治疗的新时 代。与标准放疗相比,TRT的治疗效果取决于放射 性核素的选择、稳定性和靶向效果。大多数用于肿 瘤治疗的放射性核素释放出γ射线、α或β粒子等, 其在微观水平上具有不同的剂量效应^[11]。¹⁷⁷Lu是 一种理想的β⁻放射性核素,其物理性质使其成为治 疗 mCRPC的理想放射性核素。¹⁷⁷Lu的射程较短,对 小肿瘤的照射效果更好,较短的射程也能引导能量 进入肿瘤内而非进入周围正常组织,该路径长度也 足以在肿瘤病灶内产生"旁观者"和"交叉火力"效 应。¹⁷⁷Lu的物理半衰期相对较长(约为6.7 d),且¹⁷⁷Lu-PSMA放射性药物能在瘤内滞留,可以减少所需给 药频率。这些物理性质和靶向PSMA带来的获益可 将¹⁷⁷Lu的有效活度递送至前列腺癌细胞^[12-14]。

基于 VISION 研究结果,¹⁷⁷ Lu-PSMA-617 在 2022年3月获美国食品与药品监督管理局批准,用 于治疗 PSMA 阳性、已接受雄激素受体通路抑制剂 和紫杉烷类化疗的 mCRPC^[4,15-16]。同时,另外一 种¹⁷⁷ Lu-PSMA 治疗药物¹⁷⁷ Lu-PSMA-I&T 已经在国外 进入Ⅲ期临床阶段(NCT04647526),初步的疗效数 据显示,在既往接受过一种雄激素受体通路抑制剂 但未接受紫杉烷化疗的前列腺癌患者中,该药物具 有显著的疗效,客观缓解率为 60%,中位无进展生 存期达到 11.5 个月;并且该药物在试验中展现了良好的患者耐受性,不良反应主要为口干(25.9%)、乏力(22.2%)、恶心(18.5%)和贫血(14.8%)^[15,17]。 国内也积极开展了¹⁷⁷Lu-PSMA-I&T 对前列腺癌治疗效果评价的相关研究^[18-19]。

本研究中使用本科室新型合成¹⁷⁷Lu 标记的 PSMA 靶向药物¹⁷⁷Lu-PSMA-30 在前列腺癌患者中进行了 应用,并与国外Ⅲ期临床试验的¹⁷⁷Lu-PSMA-I&T进 行了比较,结果显示¹⁷⁷Lu-PSMA-3Q标记简便、产率 和放化纯高、稳定性好;正常小鼠药代动力学、生物 分布及排泄实验均提示177 Lu-PSMA-30 血液清除 快,大部分经过肾脏排泄,少部分经过肝脏排泄,具 有良好的生物学性能:荷瘤鼠生物分布提示其具有 较高的瘤内摄取和较长的滞留时间:2 例患者的 SPECT 显像进一步提示¹⁷⁷Lu-PSMA-3Q 在体内靶向 性好,滞留时间较长,提示其可精准靶向,发挥放射 性核素内照射治疗作用,且与¹⁷⁷Lu-PSMA-I&T相 比,¹⁷⁷Lu-PSMA-3Q 有着更快的背景清除速率,这可 能会为患者带来更少的放射性毒性不良反应,提升 肿瘤患者临床获益。同时良好的生物学性能也可以 尝试进一步使用 α 核素进行标记并开展临床试验。 总之¹⁷⁷Lu-PSMA-30 是一种理想的靶向 PSAM 的前 列腺癌治疗药物,有望成为治疗前列腺癌的临床新 选择。

利益冲突 所有作者声明无利益冲突

作者贡献声明 刘欢欢:研究实施、数据分析、论文撰写;潘越、张靖 峰、孙树伟:研究实施、数据采集;张晓军、张锦明:研究指导、论文修 改、经费支持

参考文献

- [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660.
- Privé BM, Derks Y, Rosar F, et al. ⁸⁹Zr-labeled PSMA ligands for pharmacokinetic PET imaging and dosimetry of PSMA-617 and PSMA-I&T: a preclinical evaluation and first in man[J]. Eur J Nucl Med Mol Imaging, 2022, 49(6): 2064-2076. DOI: 10.1007/s00259-021-05661-0.
- [3] Delker A, Schleske M, Liubchenko G, et al. Biodistribution and dosimetry for combined [¹⁷⁷Lu]Lu-PSMA-I&T/[²²⁵Ac]Ac-PSMA-I&T therapy using multi-isotope quantitative SPECT imaging[J]. Eur J Nucl Med Mol Imaging, 2023, 50(5): 1280-1290. DOI:10. 1007/s00259-022-06092-1.
- [4] Schuchardt C, Zhang J, Kulkarni HR, et al. Prostate-specific membrane antigen radioligand therapy using ¹⁷⁷Lu-PSMA I&T and ¹⁷⁷Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer; comparison of safety, biodistribution, and dosimetry[J]. J Nucl Med, 2022, 63(8): 1199-1207. DOI:10.2967/ jnumed.121.262713.
- [5] Wu Y, Zhang X, Zhou H, et al. Preclinical development of a novel [⁶⁸Ga]Ga-/[¹⁷⁷Lu]Lu-labeled agent for PSMA-targeted imaging and therapy[J]. J Radioanal Nucl Chem, 2022, 331(6): 2705-2717. DOI:10.1007/s10967-022-08301-5.
- [6] Wu Y, Zhang X, Zhou H, et al. Synthesis, preclinical evaluation, and first-in-human study of Al¹⁸F-PSMA-Q for prostate cancer imaging[J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2774-2785. DOI:10.1007/s00259-022-05775-z.
- [7] Wu Y, Zhang X, Zhang Y, et al. Optimized ⁶⁸Ga-labeled ureabased PSMA-targeted PET tracers for prostate cancer [J]. Pharmaceuticals (Basel), 2022, 15(8): 1001. DOI:10.3390/ph15081001.
- [8] Wu Y, Zhang X, Duan X, et al. Optimized therapeutic ¹⁷⁷Lu-labeled PSMA-targeted ligands with improved pharmacokinetic characteristics for prostate cancer[J]. Pharmaceuticals (Basel), 2022, 15(12): 1530. DOI:10.3390/ph15121530.
- [9] Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI:10.1097/CM9.00000000001474.
- [10] Eiber M, Fendler WP, Rowe SP, et al. Prostate-specific membrane antigen ligands for imaging and therapy [J]. J Nucl Med,

2017, 58 (Suppl 2): 67S-76S. DOI: 10. 2967/jnumed. 116. 186767.

- [11] Nelson B, Andersson JD, Wuest F. Targeted alpha therapy: progress in radionuclide production, radiochemistry, and applications
 [J]. Pharmaceutics, 2020, 13(1): 49. DOI: 10.3390/pharmaceutics13010049.
- [12] Flaig TW, Potluri RC, Ng Y, et al. Treatment evolution for metastatic castration-resistant prostate cancer with recent introduction of novel agents: retrospective analysis of real-world data[J]. Cancer Med, 2016, 5(2): 182-191. DOI:10.1002/cam4.576.
- [13] Gafita A, Fendler WP, Hui W, et al. Efficacy and safety of ¹⁷⁷Lulabeled prostate-specific membrane antigen radionuclide treatment in patients with diffuse bone marrow involvement: a multicenter retrospective study[J]. Eur Urol, 2020, 78(2): 148-154. DOI:10. 1016/j.eururo.2020.05.004.
- [14] Moreira DM, Howard LE, Sourbeer KN, et al. Predicting time from metastasis to overall survival in castration-resistant prostate cancer: results from SEARCH[J]. Clin Genitourin Cancer, 2017, 15(1): 60-66.e2. DOI:10.1016/j.clgc.2016.08.018.
- [15] Sadaghiani MS, Sheikhbahaei S, Werner RA, et al. A systematic review and meta-analysis of the effectiveness and toxicities of lutetium-177-labeled prostate-specific membrane antigen-targeted radioligand therapy in metastatic castration-resistant prostate cancer[J]. Eur Urol, 2021, 80(1): 82-94. DOI:10.1016/j.eururo.2021.03. 004.
- [16] Olivier T, Powell K, Prasad V. Lutetium-177-PSMA-617 in metastatic castration-resistant prostate cancer: limitations of the VISION trial[J]. Eur Urol, 2023, 84(1): 4-6. DOI:10.1016/j.eururo. 2022.08.022.
- [17] Gafita A, Calais J, Grogan TR, et al. Nomograms to predict outcomes after ¹⁷⁷Lu-PSMA therapy in men with metastatic castrationresistant prostate cancer: an international, multicentre, retrospective study[J]. Lancet Oncol, 2021, 22(8): 1115-1125. DOI:10. 1016/S1470-2045(21)00274-6.
- [18] 张朋俊,张露露,卜婷,等.¹⁷⁷Lu标记的放射性药物制备方法的 比较及初步临床应用.中华核医学与分子影像杂志,2022,42 (10):597-601.DOI:10.3760/cma.j.cn321828-20210201-00021. Zhang PJ, Zhang LL, Bu T, et al. Comparison of preparation for ¹⁷⁷Lu-labeled radiopharmaceutical and its preliminary clinical application[J]. Chin J Nucl Med Mol Imaging, 2022, 42(10):597-601.DOI:10.3760/cma.j.cn321828-20210201-00021.
- [19] 谢彦,李澄,张露露,等.¹⁷⁷Lu-PSMA-I&T 治疗前列腺癌的疗效 评价. 中华核医学与分子影像杂志, 2021, 41(6): 356-361.
 DOI:10.3760/cma.j.cn321828-20201105-00400.
 Xie Y, Li C, Zhang LL, et al. Efficacy of ¹⁷⁷Lu-PSMA-I&T in the treatment of prostate cancer [J]. Chin J Nucl Med Mol Imaging, 2021, 41 (6): 356-361. DOI: 10.3760/cma. j. cn321828-20201105-00400.

(收稿日期:2024-03-21)

• 342 •