・短篇论著・

¹⁸F-FDG PET/CT 代谢参数联合临床特征预测早期肺腺癌 脉管浸润的价值

张驹¹ 姜岩涛² 李晓旭¹ 李奔¹ 高宅崧¹ 王振光¹ 杨光杰¹ ¹青岛大学附属医院 PET 中心,青岛 266000;²天津医科大学肿瘤医院肺部肿瘤内科、 国家恶性肿瘤临床医学研究中心、天津市肿瘤防治重点实验室、天津市恶性肿瘤临床 医学研究中心、天津市肺癌诊治中心,天津 300060

通信作者:杨光杰, Email: ygj_2815@ qdu.edu.cn

DOI:10.3760/cma.j.cn321828-20231128-00122

Value of ¹⁸F-FDG PET/CT metabolic parameters combined with clinical features to predict vascular infiltration in lung adenocarcinoma

Zhang Ju¹, Jiang Yantao², Li Xiaoxu¹, Li Ben¹, Gao Zhaisong¹, Wang Zhenguang¹, Yang Guangjie¹ ¹PET Center, Affiliated Hospital of Qingdao University, Qingdao 266000, China; ²Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Medical Research Center of Malignant Tumor; Key Laboratory of Cancer Prevention and Control of Tianjin; Tianjin Clinical Medical Research Center of Malignant Tumor; Tianjin Lung Cancer Diagnosis and Treatment Center, Tianjin 300060, China

Corresponding author: Yang Guangjie, Email: ygj_2815@ qdu.edu.cn DOI:10.3760/cma.j.cn321828-20231128-00122

肺癌的发病率与死亡率在我国均位居首位,而肺腺癌是 占比最高的组织学亚型^[1]。虽然手术切除是肺癌的主要治 疗手段,但即使是 I/II 期患者术后肿瘤复发率也高达 30%, 所以识别预后生物标志物对于复发高风险患者行个体化精 准诊疗至关重要,而脉管浸润(lymphovascular invasion, LVI) 是肺腺癌患者的重要不良预后因素^[2]。

LVI 是指癌细胞簇在癌周淋巴管、动脉或者静脉腔内的 浸润性病变,其与肺癌患者的局部浸润和远处复发密切相 关^[3]。美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)指南也将血管浸润作为影响肺腺癌患者生 存的高危因素^[4]。因此,术前精准预测 LVI 对肺腺癌患者的 治疗方案及术后管理有重要价值。传统影像学手段(如 CT 等)在预测肺腺癌患者的 LVI 方面价值有限^[5],而¹⁸F-FDG PET/CT 能够反映患者病灶的代谢信息及形态特征,在肺癌 的鉴别诊断、疗效评价及预后评估方面有着独特的优势^[56]。 本研究将探讨基于¹⁸F-FDG PET/CT 影像征象及代谢参数联 合临床特征预测早期肺腺癌 LVI 的价值。

一、资料与方法

1.研究对象。回顾性收集 2011 年 10 月至 2021 年 1 月在 青岛大学附属医院和青岛市中心医院就诊的 234 例早期肺腺 癌患者[男 101 例、女 133 例,年龄 27~83(61.3±8.9)岁]的临 床资料。纳入标准:(1)术后病理证实为 I/II期肺腺癌且为 LVI 的患者;(2)术前 2 周内行¹⁸ F-FDG PET/CT 显像;(3) PET/CT 图像质量符合分析要求;(4)临床资料完整。排除 标准:(1)术前接受过放疗或化疗;(2)既往合并其他恶性肿 瘤;(3)患有其他可能影响图像分析的肺部疾病。将无进展 生存(progression-free survival, PFS)作为研究终点,定义为术 后至患者疾病复发、死亡或至最后一次随访的时间间隔。根 据文献[7]设计研究,将来自青岛大学附属医院的 175 例患 者作为训练集用于模型的建立,来自青岛市中心医院的 59 例 患者作为验证集用于模型效能的评价。本研究符合《赫尔辛 基宣言》的原则,并已通过青岛大学附属医院和青岛市中心 医院伦理委员会审批,伦理批件号分别为 QYFY WZLL 27218、 KY202105402。

2.显像方法。PET/CT 全身显像采用美国 GE Discovery VCT 型 PET/CT 仪,¹⁸F-FDG 由本院 PET 中心制备(放化纯> 95%)。检查前患者需保持空腹状态 6 h 以上,空腹血糖低于 11.1 mmol/L。按患者体质量 5.5~6.6 MBq/kg 静脉注射¹⁸F-FDG,注射后嘱患者静息平卧 40~60 min 后排空膀胱,并行 PET/CT 全身检查。扫描范围为颅脑顶部至大腿中段,先行 体部 CT 扫描(管电流 110 mA;管电压 120 kV;转速 0.7 r/s; 床速 29.46 cm/s;矩阵 512×512;层厚 3.75 mm),后行 PET 采 集(矩阵 128×128,每个床位采集 2~3 min,采集 7~9 个床 位)。获得患者的 CT 图像、PET 图像及 PET/CT 融合图像。 此外,患者均行胸部 CT 扫描,采集图像行 1.25 mm 薄层高分 辨率图像重建,获得胸部薄层 CT 图像。

3.图像分析。由2名5年以上PET/CT诊断经验的核医 学科医师分别对肿瘤的CT征象进行分析,意见不一致时协 商一致。结合患者的临床资料及影像学征象收集以下信息: 性别、年龄、吸烟、癌胚抗原(carcinoembryonic antigen, CEA)、 糖类抗原(carbohydrate antigen, CA)125、神经元特异性烯醇 化酶(neuron-specific enolase, NSE)、细胞角蛋白19片段(cytokeratin 19 fragment, CYFRA21-1)、肿瘤最大径、外周形状、 肿瘤病灶成分、分叶征、毛刺征、空泡征、支气管充气征、胸膜 凹陷征、血管集束征。使用 AW4.7 工作站测量代谢参数,以 SUV_{max}的 40%作为阈值勾画病灶的 ROI,并记录;当工作站 无法半自动勾画 ROI 时(如部分病灶处代谢并不明显高于正 常肺组织),采用目测法在病灶FDG摄取最高的层面勾画 • 622 •

ROI,并测量 SUV_{max}。

4.统计学处理。采用 IBM SPSS 26.0 及 R 语言软件行统 计学分析。符合正态分布的定量资料采用 $\bar{x}\pm s$ 表示,差异分 析行两独立样本 t 检验;非正态分布的定量资料采用 $M(Q_1, Q_3)$ 表示,行 Mann-Whitney U 检验;定性资料采用频数(百分 比)表示,行 X^2 检验和 Fisher 确切概率法。首先在训练集中 行单因素分析筛选出影响因素,再使用二元 logistic 回归分析 确定独立预测因子,并建立风险预测模型,使用 ROC 曲线验 证模型的诊断效能,采用 Delong 检验对 AUC 的差异进行比 较。最后用 Kaplan-Meier 生存曲线对生存预后进行评价。P < 0.05 为差异有统计学意义。

二、结果

1.临床资料。除外周形状(P=0.026)、血管集束征(X²= 6.61,P=0.010)外,训练集与验证集2组患者基线特征差异 均无统计学意义(X²值:0.01~2.83,t=0.26,z值:-1.71~ 0.89;均P>0.05),验证集患者可以用训练集患者的预测模 型进行效能验证。

234 例早期肺腺癌患者中 LVI 阳性 67 例(28.6%),训练 集 175 例患者中 LVI 阳性 48 例(27.4%),验证集 59 例患者 中 LVI 阳性 19 例(32.2%)。训练集单因素分析结果示,组间 性别、吸烟、CEA、CA125、肿瘤最大径、外周形状、病灶成分、 支气管充气征及 SUV_{max}差异均有统计学意义(X²值:5.53~ 26.63, z值:-7.34~-2.40;均 P<0.05;表1)。

2.多因素分析结果。将上述有统计学意义的指标纳入 多因素 logistic 回归分析,显示吸烟[比值比(odds ratio, *OR*)= 3.508,95% *CI*:1.407~8.747, *P*=0.007]、病灶成分(*OR*= 2.302,95% *CI*:1.066~4.971, *P*=0.034)、SUV_{max}(*OR*= 1.599,95% *CI*:1.366~1.872, *P*<0.001)是早期肺腺癌 LVI 的独立预测因素。 3.预测模型的构建。将吸烟、病灶成分和 SUV_{max}纳入二 元 logistic 回归分析,建立回归模型: $P=1/(1+e^{-x})$,其中 P 代表肺癌 LVI 的发生概率,数值越接近于 1,出现 LVI 的概率 越大; $x=-4.496+0.470\times$ SUV_{max}+1.255×吸烟+0.834×病灶成 分[患者吸烟(是)赋值为 1,吸烟(否)赋值为 0;病灶在 CT 上显示为实性成分赋值为 1,亚实性成分赋值为 0]。

4.模型诊断效能的评价。经 ROC 曲线验证,该回归模型 在训练集中的 AUC(95% *CI*)为 0.869(0.810~0.928),预测 灵敏度为 89.6%(43/48),特异性为 77.2%(98/127);AUC 高 于吸烟和病灶成分(0.615、0.607;*z* 值:-0.62、-7.27,均 *P*< 0.001);但与 SUV_{max} AUC(0.861)差异无统计学意义(*z*=-2.90, *P*=0.630)。在验证集中的 AUC(95% *CI*)为 0.843(0.745~ 0.941),预测灵敏度为 15/19,特异性为 72.5%(29/40);AUC 高于吸烟和病灶成分(0.523、0.663;*z* 值:-3.48、-2.90,均 *P*< 0.01);但与 SUV_{max} AUC(0.806)差异无统计学意义(*z*=-0.55, *P*=0.584)。

5.生存预后的评价。截至 2021 年 1 月,234 例患者均完成 随访。训练集患者的中位 PFS 为 22 个月(范围为 1~88 个月); 验证集患者的中位 PFS 为 25 个月(范围为 1~77 个月)。经 Kaplan-Meier 生存曲线验证,训练集与验证集 LVI 阴性患者 的预后均优于阳性患者。根据预测模型亦能得到相同结论。 分别对 3 个独立预测因子——吸烟、病灶成分及 SUV_{max}行 Kaplan-Meier 生存曲线验证,获得 SUV_{max}最佳截断值为 2.5。 病灶成分为实性成分(训练集: $\chi^2 = 10.26$, P < 0.001;验证集: $\chi^2 = 11.32$, P < 0.001)及高 SUV_{max}(SUV_{max}>2.5)(训练集: $\chi^2 = 11.68$, P < 0.001;验证集: $\chi^2 = 10.54$, P < 0.001)的差异虽无统计学意义[(训练集: $\chi^2 = 2.33$, P = 0.140;验证集: $\chi^2 = 0.14$, P = 0.720)],但吸烟患者的生存 趋势较差。

组别	例数	男/女 (例)	年龄	吸烟(例)		CEA			CA125	NSE		CYFRA21-1	
			(岁; <i>x</i> ±s)	是	否	$\left[\mu g/L; M(Q_1, Q_3) \right]$		$\left[\mathrm{kU/L}; M(Q_1,Q_3) \right]$		$\left[\mu g/L; M(Q_1,Q_3) \right]$		$\left[\mu \text{g/L}; M(Q_1, Q_3) \right]$	
LVI 阳性	48	26/22	26/22 61.0±10.6 2		25	3.69(1.85,15.58		14.38(9.16,24.18)		12.78(10.43,14.62)		2.79(2.10,3.85)	
LVI 阴性	127	44/83	61.5±8.6	29	98	2.28(1.58,4.45	5)	9.87(7.84,12.73)		12.47(11.00,14.17)		2.68(2.15,3.58)	
检验值	直	5.53	0.32ª).49	-2.40^{b}		-3.60 ^b		-0.19 ^b		-0.63 ^b	
<i>P</i> 值		0.020	0.750		0.001 0.016				< 0.001	0.846		0.532	
组别	佰	 *tr	肿瘤最大径		外周	周形状(例)		病灶成分(例)		分叶征(例)		毛刺征(例)	
	10	x [mm; $M(Q_1, Q_3)$)]	类圆刑	阝 不规则形	勻	民性	亚实性	是	否	是	否
LVI 阳性	4	48	31(23,41)		45	3		46	2	44	4	29	19
LVI 阴性	性 127		25(19,31)		127	127 0		69	58	112	15	61	66
检验值			-3.63 ^b		_c			26.63		0.44		2.14	
<i>P</i> 值			< 0.001		0.020			< 0.001		0.510		0.140	
组别	/mi	数 ——	空泡征(例)		支气管充气征(例)			胸膜凹陷征(例)		血管集束征(例)		SUV _{max}	
	194		是 否		是	否	長	1	否	是	否	$[M(Q_1,$	$[Q_3)]$
LVI 阳性	4	48	7 41		11	37	3	6	12	24	24	7.6(4.3	,9.7)
LVI 阴性	12	27	14 113		62	65	9.	3	34	78	49	2.3(1.3,4.3)	
检验值			0.42		9.61			0.	06	1.87		-7.34 ^b	
<i>P</i> 值			0.520		0.002			0.	812	0.172		< 0.001	

表1 175 例训练集不同组别肺腺癌患者的临床资料比较

注:"为t值,^b为z值,^c为采用 Fisher 确切概率法,余为 X^2 值;CA 为糖类抗原, CEA 为癌胚抗原, CYFRA21-1 为细胞角蛋白 19 片段, LVI 为脉管浸润, NSE 为神经元特异性烯醇化酶

三、讨论

目前病理学检查仍为诊断 LVI 的"金标准",但部分患者 因无法行创伤性检查等原因无法明确 LVI 情况。因此,术前 如何快速、高效地预测肺腺癌患者有无 LVI, 对优化个体化 诊疗、改善患者预后至关重要。本研究中吸烟是预测 LVI 的 独立预测因子,这与 Chen 等^[8]的研究结果一致。烟草内含 有多种可能会引起 DNA 损伤的致癌物,增加吸烟患者的 LVI 概率,危害患者预后。Choe 等^[9]研究表明,在非小细胞肺癌 中,LVI多发生于实性成分为主的病灶中,本研究结果与之 吻合(实性成分与亚实性成分:OR=2.302, P=0.034)。临床 中实性成分在恶性结节中一般代表浸润性较强的成分,实性 成分比重越高,浸润程度越高,恶性程度就越高,这与本研究 结果相一致。SUV_{max}是 PET/CT 检查中最常用的半定量指 标,能够提示病灶危险程度及生物学侵袭性^[10]。Noda 等^[11] 的研究证明了 SUV_{ma}是预测肺腺癌 LVI 的独立预测因子,本 研究同样证实了这一点。本研究中 SUV_{max} 与预测模型的 AUC 差异虽无统计学意义,但预测模型的 AUC 大于 SUV_{max} 的 AUC,仍考虑预测模型的预测效能更优。

既往已有研究提出建立影像组学模型对 LVI 进行预测 并验证,然而目前该类模型临床转化难度较大^[5,12]。本研究 建立了基于常规影像(临床因素+CT 征象+PET 代谢参数) 的临床预测模型并进行了效能验证。虽然该模型维度较低, 但其更适合核医学科医师在真实世界中进行应用和验证。

本研究验证集患者样本量有限,影响预测模型的组外验证,后续还需进行多中心大样本的前瞻性研究进行模型预测效能验证。

综上,吸烟、病灶成分及 SUV_{max}是早期肺腺癌 LVI 的最 佳预测因子,纳入上述因素所建立的早期肺腺癌 LVI 风险预 测模型具有较高的灵敏度与特异性,有助于优化个体化诊 疗,改善患者的预后管理。

利益冲突 所有作者声明无利益冲突

作者贡献声明 张驹:研究实施、论文撰写;姜岩涛:统计学分析;李 晓旭、李奔、高宅崧:数据采集与分析;王振光、杨光杰:研究指导、论 文修改

参考文献

- Mei D, Luo Y, Wang Y, et al. CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses[J]. Cancer Imaging, 2018, 18(1): 52. DOI:10. 1186/s40644-018-0184-2.
- [2] Sung SY, Kwak YK, Lee SW, et al. Lymphovascular invasion increases the risk of nodal and distant recurrence in node-negative stage I – II A non-small-cell lung cancer [J]. Oncology, 2018, 95 (3): 156-162. DOI:10.1159/000488859.
- [3] Okiror L, Harling L, Toufektzian L, et al. Prognostic factors inclu-

ding lymphovascular invasion on survival for resected non-small cell lung cancer[J]. J Thorac Cardiovasc Surg, 2018, 156(2): 785-793. DOI:10.1016/j.jtcvs.2018.02.108.

- [4] Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530. DOI:10.6004/jnccn.2022.0025.
- [5] Nie P, Yang G, Wang N, et al. Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma[J]. Eur J Nucl Med Mol Imaging, 2021, 48(1): 217-230. DOI:10.1007/ s00259-020-04747-5.
- [6] Manafi-Farid R, Karamzade-Ziarati N, Vali R, et al. 2-[¹⁸F]FDG PET/CT radiomics in lung cancer: an overview of the technical aspect and its emerging role in management of the disease[J]. Methods, 2021, 188: 84-97. DOI:10.1016/j.ymeth.2020.05.023.
- [7] Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. BMJ, 2015, 350: g7594. DOI:10.1136/bmj.g7594.
- [8] Chen Q, Shao J, Xue T, et al. Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer[J]. Eur Radiol, 2023, 33(2): 947-958. DOI: 10.1007/s00330-022-09109-3.
- [9] Choe J, Kim MY, Yun JK, et al. Sublobar resection in stage I A non-small cell lung cancer: role of preoperative CT features in predicting pathologic lymphovascular invasion and postoperative recurrence[J]. AJR Am J Roentgenol, 2021, 217(4): 871-881. DOI: 10.2214/AJR.21.25618.
- [10] Kandathil A, Kay FU, Butt YM, et al. Role of FDG PET/CT in the eighth edition of TNM staging of non-small cell lung cancer[J]. Radiographics, 2018, 38 (7): 2134-2149. DOI: 10.1148/rg. 2018180060.
- [11] Noda Y, Goshima S, Kanematsu M, et al. F-18 FDG uptake on positron emission tomography as a predictor for lymphovascular invasion in patients with lung adenocarcinoma [J]. Ann Nucl Med, 2016, 30(1): 11-17. DOI:10.1007/s12149-015-1023-1.
- [12] 孙晓慧,刘志鹏,杨大壮,等.¹⁸F-FDG PET 影像组学在术前预 测肺腺癌脉管浸润及脏层胸膜侵犯中的应用价值[J].中华核 医学与分子影像杂志,2024,44(2):74-79.DOI:10.3760/cma. j.en321828-20230313-00056.

Sun XH, Liu ZP, Yang DZ, et al. Preoperative prediction of lymphovascular and visceral pleural invasion of lung adenocarcinoma based on ¹⁸F-FDG PET radiomics[J]. Chin J Nucl Med Mol Imaging, 2024, 44 (2): 74-79. DOI: 10.3760/cma.j.cn321828-20230313-00056.

(收稿日期:2023-11-28)