·肿瘤新型放射性药物 ·

⁸⁹Zr 标记 EGFR 及 HER2 抗体用于胃黏液 腺癌的 microPET 显像研究

石岱¹ 曹庆辉² 张颖颖¹ 程远¹ 徐展¹ 程登峰¹ 石洪成¹ ¹上海市影像医学研究所、复旦大学附属中山医院核医学科、复旦大学核医学研究所、 复旦中山医院肿瘤中心 200032;²复旦大学附属中山医院药剂科,上海 200032 通信作者:石洪成, Email: shi.hongcheng@ zs-hospital.sh.cn

【摘要】 目的 筛选适合监测低葡萄糖代谢的胃黏液腺癌小鼠模型的⁸⁹Zr标记表皮生长因子 受体(EGFR)和人表皮生长因子受体2(HER2)单克隆抗体(简称单抗)分子探针。方法 通过细胞 爬片和移植瘤肿瘤切片验证 MGC803 胃癌细胞株的 EGFR 和 HER2 表达情况;用⁸⁹Zr 标记去铁胺-西 妥昔单抗(DFO-Cetuximab)和去铁胺-帕妥珠单抗(DFO-Pertuzumab),制得分别靶向 EGFR 和 HER2 的⁸⁹Zr-DFO-Cetuximab 和⁸⁹Zr-DFO-Pertuzumab,测定其放化纯;通过细胞结合实验、阻断实验验证⁸⁹Zr-DFO-Cetuximab 和⁸⁹Zr-DFO-Pertuzumab 与 MGC803 的结合力和特异性;将 12 只 MGC803 荷瘤裸鼠模 型分3组(每组4只),分别注射⁸⁹Zr-DFO-Cetuximab(7.4 MBq/只,74 μg/只),⁸⁹Zr-DFO-Pertuzumab (7.4 MBq/只,70 µg/只)和¹⁸F-脱氧葡萄糖(FDG)(7.4 MBq/只),于注射后 4、24 和 48 h 进行 micro-PET 显像(¹⁸F-FDG 显像为注射后 1 h);另取 8 只荷瘤裸鼠,分为⁸⁹Zr-DFO-Cetuximab 组和⁸⁹Zr-DFO-Pertuzumab 组(各4只), 于探针注射后 48 h 进行生物分布研究。采用两独立样本 t 检验进行组间生 物分布比较。结果 肿瘤切片免疫荧光染色示 MGC803 胃癌细胞株 EGFR 表达量高于 HER2。⁸⁹Zr-DFO-Cetuximab 和⁸⁹Zr-DFO-Pertuzumab 放化纯均大于 95%,比活度分别为 100 和 95 MBq/mg;2 种探针在 生理盐水和胎牛血清(FBS)中稳定性好,放置 72 h 放化纯仍高于 80%。MicroPET 显像示 MGC803 肿 瘤部位⁸⁹Zr-DFO-Cetuximab的摄取高于¹⁸F-FDG和⁸⁹Zr-DFO-Pertuzumab。生物分布实验示,48 h 肿 瘤⁸⁹Zr-DFO-Cetuximab 摄取[每克组织百分注射剂量率(%ID/g)]为 56.3±12.0,高于⁸⁹Zr-DFO-Pertuzumab 摄取(22.0±3.6;t=4.31, P<0.05)。结论 相较于⁸⁹Zr-DFO-Pertuzumab、⁸⁹Zr-DFO-Cetuximab 具 有更好的无创监测低葡萄糖代谢胃黏液腺癌的潜能。

【关键词】 腺癌, 黏液;胃;受体, 表皮生长因子;同位素标记;锆;正电子发射断层显像术;肿瘤 细胞, 培养的;小鼠, 裸

基金项目:复旦大学附属中山医院临床研究专项基金(2020ZSLC20)

DOI:10.3760/cma.j.cn321828-20210701-00217

MicroPET imaging studies of ⁸⁹Zr-labeled EGFR and HER2 antibodies in gastric mucinous adenocarcinoma

Shi Dai¹, Cao Qinghui², Zhang Yingying¹, Cheng Yuan¹, Xu Zhan¹, Cheng Dengfeng¹, Shi Hongcheng¹ ¹Shanghai Institute of Medical Imaging; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University; Nuclear Medicine Institute of Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ²Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China;

Corresponding author: Shi Hongcheng, Email: shi.hongcheng@zs-hospital.sh.cn

[Abstract] Objective To screen ⁸⁹Zr-labeled anti-epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) monoclonal antibody molecular probes suitable for monitoring the gastric mucinous adenocarcinoma bearing mouse models with low glucose metabolism. **Methods** The expression of EGFR and HER2 in the MGC803 gastric cancer cell line was verified by analyzing cell slides and xenograft tumor sections. ⁸⁹Zr-Deferoxamine (DFO)-Cetuximab and ⁸⁹Zr-DFO-Pertuzumab were prepared and the radiochemical purity was detected. Cell binding experiments and blocking experiments were performed to verify the binding ability and specificity of the probes. Twelve gastric mucinous adenocarcinoma bearing mouse models were divided into 3 groups (n=4 in each group): ⁸⁹Zr-DFO-Cetuximab group (7.4 MBq/mouse), 74 µg/mouse) and ¹⁸F-fluorodeoxyglucose (FDG) group (7.4 MBq/mouse). MicroPET imaging was performed at 4, 24 and 48 h (¹⁸F-FDG group underwent imaging at 1 h only) post-injection. The biodistribution study of ⁸⁹Zr-DFO-Cetuximab and ⁸⁹Zr-DFO-Cetuximab and ⁸⁹Zr-DFO-Cetuximab and ⁸⁹Zr-DFO-Cetuximab and ⁸⁹Zr-DFO-Cetuximab and ⁸⁹Zr-DFO-Cetuximab for the probes.

DFO-Pertuzumab was conducted in 2 groups (n=4 in each group) 48 h after the injection. The independent sample *t* test was used for data analysis. **Results** The immunofluorescent staining demonstrated EGFR expression was significantly higher than HER2 expression in MGC803 gastric cancer cell line. The radiochemical purity of ⁸⁹Zr-DFO-Cetuximab and ⁸⁹Zr-DFO-Pertuzumab were both more than 95%, and the specific activities were 100 and 95 MBq/mg, respectively. The two probes had good stability in normal saline and fetal bovine serum, with the radiochemical purity higher than 80% at 72 h. MicroPET imaging showed that the uptake of ⁸⁹Zr-DFO-Cetuximab in the MGC803 tumor was significantly higher than that of ¹⁸F-FDG and ⁸⁹Zr-DFO-Pertuzumab. The biodistribution study demonstrated the ⁸⁹Zr-DFO-Cetuximab uptake (percentage activity of injection dose per gram of tissue, %ID/g) of tumors at 48 h was significantly higher than that of ⁸⁹Zr-DFO-Pertuzumab (56.3±12.0 vs 22.0±3.6; t=4.31, P<0.05). Conclusion Compared with ⁸⁹Zr-DFO-Pertuzumab, ⁸⁹Zr-DFO-Cetuximab has a better potential for non-invasive monitoring of gastric mucinous adenocarcinoma with low glucose metabolism.

[Key words] Adenocarcinoma, mucinous; Stomach; Receptor, epidermal growth factor;
 Isotope labeling; Zirconium; Positron-emission tomography; Tumor cells, cultured; Mice, nude
 Fund program: Clinical Research Project of Zhongshan Hospital, Fudan University (2020ZSLC20)

DOI:10.3760/cma.j.cn321828-20210701-00217

尽管近几十年来胃癌的全球发病率总体下降, 但其仍然是居前五位的常见恶性肿瘤之一^[1-2]。¹⁸F-脱氧葡萄糖(fluorodeoxyglucose, FDG)PET/CT 检查 的逐步普及为胃癌的诊断和分期提供了帮助。然 而,由于葡萄糖转运蛋白1表达水平较低,胃黏液腺 癌的¹⁸F-FDG PET/CT 检查常为阴性^[3]。因此,亟需 开发针对胃黏液腺癌的显像剂。

⁸⁹Zr标记的抗体已成为有潜力的用于癌症的 PET显像药物^[4]。⁸⁹Zr的物理半衰期($T_{1/2}$ =3.3 d) 适合标记全长抗体并用于 PET显像^[5-6]。临床广泛 应用的单克隆抗体(简称单抗)中的西妥昔单抗 (Cetuximab)和帕妥珠单抗(Pertuzumab),分别靶向 表皮生长因子受体(epidermal growth factor receptor, EGFR)和人表皮生长因子受体 2(human epidermal growth factor receptor 2, HER2)。⁸⁹Zr-去铁胺(Deferoxamine, DFO)-Cetuximab 和⁸⁹Zr-DFO-Pertuzumab 也 已经进入临床试验^[7-8]。本研究拟选择低糖代谢的 胃黏液腺癌 MGC803 细胞株,通过小鼠模型实验验 证⁸⁹Zr-DFO-Cetuximab 和⁸⁹Zr-DFO-Pertuzumab 是否 能作为监测胃黏液腺癌的显像剂。

材料与方法

1.细胞、动物与主要材料。MGC803 人胃黏液腺癌 细胞株购自上海中桥新舟公司。20 只雄性 8 周龄裸鼠 购自上海杰斯捷公司[许可证编号为 SCXK(沪) 2018-0004],体质量 20~22 g,饲养在中山医院动物 中心:独立通风的笼盒,温度 22~26 ℃,湿度 40%~ 70%,光照 12 h,黑暗 12 h,食水自由获取。Cetuximab 和 Pertuzumab 购自美国 Selleck 公司;胎牛血清 (fetal bovine serum, FBS)和 1640 培养基购自美国 Gibco 公司;异硫氰酸根合苄基 DFO(p-SCN-Bn-DFO) 购自美国 Macrocyclics 公司;Madic Lab microPET/MR 购自山东麦德盈华科技有限公司。

2.细胞免疫荧光染色。将 MGC803 细胞接种于 24 孔板过夜;用多聚甲醛(武汉赛维尔生物科技公 司)固定 10 min,磷酸盐缓冲液(phosphate-buffered saline, PBS)清洗 3 次,每次 5 min;用质量分数 5%牛 血清白蛋白(bovine serum albumin, BSA)封闭 1 h;与 0.01 mg/ml 兔抗人 EGFR/兔抗人 HER2 抗体(英国 Abcam 公司)在 37 ℃ 温育 1 h;PBS 清洗 3 次,每次 5 min;用 0.01 mg/ml 山羊抗兔-CY3 二抗(武汉赛维 尔生物科技有限公司)37 ℃ 温育 30 min,4',6 二脒 基-2-苯吲哚(4',6-diamidino-2-phenylindole, DAPI) 染色 5 min;PBS 清洗 3 次,每次 5 min,封片后置荧 光显微镜下观察。

3.切片免疫荧光染色。MGC 肿瘤组织石蜡切 片经脱蜡、脱水后,用 0.01 mol/L 枸橼酸钠缓冲液 在 95℃下进行抗原修复 15 min;降温后用质量分数 5% BSA 封闭 1 h;弃封闭液后,用 0.01 mg/ml 兔抗 人 EGFR/兔抗人 HER2 抗体在 4 ℃ 温育过夜;PBS 清洗 3 次,每次 5 min;用 0.01 mg/ml 山羊抗兔-CY3 二 抗室温温育 30 min,DAPI 染色 5 min;PBS 清洗 3 次,每 次 5 min,封片后置荧光显微镜下观察。

4. DFO-Cetuximab 及 DFO-Pertuzumab 制备。参 考文献[9]制备将对 *p*-SCN-Bn-DFO 溶于二甲基亚砜 (dimethyl sulfoxide, DMSO)中,使其终质量浓度为 2.5 mg/ml;将 Cetuximab/Pertuzumab 溶解于 0.1 mol/L pH 值 8.5~9.0 的碳酸氢钠缓冲液,然后将单抗与 *p*-SCN-Bn-DFO 按物质的量比 1:5 投料,室温下反应 2 h。 经 Zeba 7K 脱盐柱(美国 ThermoFisher 公司)纯化 后,得到产物 DFO-Cetuximab/DFO-Pertuzumab。

5.⁸⁹Zr-DFO-Cetuximab 及⁸⁹Zr-DFO-Pertuzumab 制备。参考文献[10]制备:将100 μg DFO-Cetux-

• 599 •

imab/DFO-Pertuzumab 溶于 0.01 mol/L pH 值 7.4 的 PBS 中,加入 37 MBq ⁸⁹ZrCl₄,反应体系 pH 值在 7~ 8 间,室温反应 30 min。经 PD-10 脱盐层析柱(美国 GE 公司)纯化后,得到产物⁸⁹Zr-DFO-Cetuximab/⁸⁹Zr-DFO-Pertuzumab。

6.质量控制、细胞结合实验及阻断实验。用纸层 析法鉴定探针的放化纯,展开剂为20 mmol/L的柠檬 酸。将探针分别置于生理盐水和体积分数10% FBS 中24、48、72 h后,检测放化纯,反映其稳定性。细胞 结合实验:将 MGC803 细胞(2×10⁵/孔)接种于24 孔 板,各孔加入⁸⁹Zr-DFO-Cetuximab/⁸⁹Zr-DFO-Pertuzumab, 使终浓度由0.1 nmol/L递增至4 nmol/L。37 ℃温育2 h 后,PBS 洗3次,用1 mol/L NaOH 消化5 min,测各孔 放射性计数。细胞阻断实验:将 MGC803 细胞(2× 10⁵/孔)接种于24 孔板,各孔加入⁸⁹Zr-DFO-Cetuximab/⁸⁹Zr-DFO-Pertuzumab,使终浓度为10 nmol/L,然 后向各孔加入不同浓度的未标记的Cetuximab/Pertuzumab,使终浓度分别为0.1、1、10、100、1 000 nmol/L。 37 ℃温育2 h后,弃上清液,PBS 洗3次,用1 mol/L NaOH 消化5 min,测各孔放射性计数。

7. MicroPET 显像及生物分布实验。动物实验 遵照本院实验动物管理办法进行。肿瘤动物模型构 建:用 PBS 重悬 MGC803 细胞,制备 MGC803 细胞 悬液,浓度为1×10⁷ 个/ml;将 100 μl 细胞悬液接种 在裸鼠右肩,常规饲养 14 d。

取皮下 MGC803 荷瘤裸鼠模型 12 只,按完全随 机法分3组,每组4只,分别于尾静脉注射⁸⁹Zr-DFO-Cetuximab(7.4 MBq/只,约74 µg/只)、⁸⁹ Zr-DFO-Pertuzumab(7.4 MBq/只,约70 µg/只)和¹⁸ F-FDG (7.4 MBq/只),前2组分别于注射探针后4、24 和 48 h 进行 microPET 显像,¹⁸F-FDG 组于尾静脉注射 后1h进行显像。于显像前5 min 用异氟烷麻醉小 鼠(氧气 0.8 L/min,异氟烷 2.0 L/min),在扫描过程 中持续麻醉。进行 30 min 的 PET 扫描,获得全身图 像,然后用有序子集最大期望值迭代法进行图像重 建。选取最佳显像时间点,另取8只小鼠(按完全 随机法分为2组,每组4只)进行⁸⁹Zr-DFO-Cetuximab、 ⁸⁹Zr-DFO-Pertuzumab 在荷瘤裸鼠体内的生物分布研 究。取下的器官或组织包括:血液、心、肺、肝、胃、 脾、肾、骨、肌肉、肿瘤。用差量法测量各组织样品质 量,并用自动 v 计数仪(GC-1500,安徽科大创新股 份有限公司)测放射性计数,通过衰减矫正后分析 数据结果,用每克组织百分注射剂量率(percentage activity of injection dose per gram of tissue, % ID/g)

表示放射性摄取。

8.统计学处理。采用 GraphPad Prism5 软件进 行数据分析。符合正态分布的定量资料以 x±s 表 示,用两独立样本 t 检验进行 2 组间比较,P<0.05 为 差异具有统计学意义。

结 果

1. MGC803 细胞株 EGFR 及 HER2 表达水平。 从 MGC803 细胞免疫荧光及 MGC803 肿瘤切片免疫 荧光染色图中的荧光强度可知, EGFR 表达量高于 HER2(图 1)。

图1 MGC803 人胃黏液腺癌细胞株表皮生长因子受体(EGFR)及 人表皮生长因子受体2(HER2)表达水平免疫荧光染色图(× 100)。A.细胞免疫荧光染色示 EGFR 表达水平;B.细胞免疫荧 光染色示 HER2表达水平;C. MGC803 肿瘤切片免疫荧光染色 示 EGFR 表达水平;D. MGC803 肿瘤切片免疫荧光染色示 HER2表达水平。DAPI为4',6二脒基-2-苯吲哚; Merge 为融 合图像;红色代表 HER2/EGFR 阳性区域,蓝色区域代表细胞 核位置

2.标记抗体的质量控制和结合特性测定结果。⁸⁹Zr-DFO-Cetuximab 及⁸⁹Zr-DFO-Pertuzumab 放化纯均大 于 95%,比活度分别为 100 和 95 MBq/mg;在生理盐 水和体积分数 10% FBS 中放置 72 h 放化纯仍均高 于 80%,表明稳定性好。阻断实验中,当未标记抗 体浓度大于等于⁸⁹Zr-DFO-Cetuximab/⁸⁹Zr-DFO-Pertuzumab 浓度的 100 倍时,超过 90%的位点被阻断,可 见特异性良好。细胞结合实验示,⁸⁹Zr-DFO-Cetuximab 的最大结合量 B_{max} 为(68 327±3 598)计数·min⁻¹,高 于⁸⁹Zr-DFO-Pertuzumab[(22 555±3 556)计数·min⁻¹; t = 15.67, P < 0.001],但⁸⁹Zr-DFO-Cetuximab的平衡

解离常数 K_d 较低(0.610 nmol/L 与 1.376 nmol/L)。

3.荷瘤裸鼠 microPET 显像及生物分布结果。 注射⁸⁹Zr-DFO-Cetuximab 后 4 h MGC803 荷瘤裸鼠 肿瘤开始显影,48 h 放射性聚集达到高峰;⁸⁹Zr-DFO-Pertuzumab 和¹⁸F-FDG 无法清晰显示肿瘤(图 2A,2B)。肿瘤对⁸⁹Zr-DFO-Cetuximab 的摄取高于⁸⁹Zr-DFO-Pertuzumab 摄取,肿瘤/肌肉比值分别为 5.12± 0.61 和 1.99±0.21(t=8.37, P<0.05)。选择显像最 清晰的 48 h 时间点进行生物分布实验,从生物分布 结果看,⁸⁹Zr-DFO-Cetuximab 和⁸⁹Zr-DFO-Pertuzumab 2 种探针主要集中在肿瘤、血液、肝、脾中(图 2C),胃 几乎不摄取;2 种探针主要通过肝代谢;肿瘤在 48 h 的⁸⁹Zr-DFO-Cetuximab 摄取高于⁸⁹Zr-DFO-Pertuzumab 摄取,分别为(56.3±12.0)和(22.0±3.6)%ID/g(t= 4.31, P<0.05)。

讨 论

由于胃黏液腺癌葡萄糖摄取低,临床上用¹⁸F-FDG PET/CT 检查时易产生漏诊。尽管胃黏液腺癌 在胃癌中占比较低(约为3%),但是其低分化、侵袭 和转移能力强,预后较差^[11-12]。本研究用适合标记 全长抗体的⁸⁹Zr 对具有 EGFR、HER2 高亲和力的 Cetuximab 和 Pertuzumab 进行标记^[13-16],并开展荷 瘤裸鼠模型显像和生物分布研究,旨在解决胃黏液 腺癌的监测问题。

本研究首先选择人胃黏液腺癌细胞株 MGC803 进行细胞免疫荧光和肿瘤组织切片免疫荧光检测, 结果示 MGC803 的 EGFR 表达量高于 HER2;随后 成功制备了具备良好稳定性、特异性的⁸⁹Zr-DFO-Cetuximab 和⁸⁹Zr-DFO-Pertuzumab,细胞结合实验结 果表明,和⁸⁹Zr-DFO-Pertuzumab 比,⁸⁹Zr-DFO-Cetuximab 与 MGC803 细胞有更强的亲和力,结合位点更 多,与前期荧光实验的结果一致。

本研究 microPET 显像示,注射⁸⁹Zr-DFO-Cetuximab 后 4 h MGC803 荷瘤裸鼠肿瘤开始显影,48 h 显影最清晰;而⁸⁹Zr-DFO-Pertuzumab 和¹⁸F-FDG 显 像无法清晰显示肿瘤(图 2A,2B),⁸⁹Zr-DFO-Cetuximab 的优势明显。⁸⁹Zr-DFO-Cetuximab 和⁸⁹Zr-DFO-Pertuzumab 注射后 48 h 在荷瘤裸鼠体内的生物分 布结果和显像结果一致,肿瘤对⁸⁹Zr-DFO-Cetuximab 的摄取高于⁸⁹Zr-DFO-Pertuzumab 的摄取。

综上,本研究结果表明,胃黏液腺癌 MGC803 细胞符合胃黏液腺癌普遍的低摄取¹⁸F-FDG 的特性,其 表面 EGFR 表达量高于 HER2;⁸⁹Zr-DFO-Cetuximab 可 以清晰显示 MGC803 肿瘤,较⁸⁹Zr-DFO-Pertuzumab 和¹⁸F-FDG 显像效果佳。另外,已有的临床试验提 示⁸⁹Zr-DFO-Pertuzumab 和⁸⁹Zr-DFO-Cetuximab 在指 导单抗用药方面的潜能^[16-17]。因此,本研究也为临 床胃黏液腺癌的监测提供了有用的信息。本研究有 一定的局限性:没有直接用 Cetuximab/Pertuzumab 直 接螯合荧光素进行活细胞荧光显像或流式细胞术。 志谢 山东麦德盈华科技有限公司李冲锋工程师在小动物 PET 方

面给予了指导

利益冲突 所有作者均声明不存在利益冲突

参考文献

- [1] Pang Y, Zhao L, Luo Z, et al. Comparison of ⁶⁸Ga-FAPI and ¹⁸F-FDG uptake in gastric, duodenal, and colorectal cancers[J]. Radiology, 2021, 298(2): 393-402. DOI:10.1148/radiol.2020203275.
- [2] Nakata R, Nagami Y, Hashimoto A, et al. Successful eradication of helicobacter pylori could prevent metachronous gastric cancer: a propensity matching analysis[J]. Digestion, 2021, 102(2): 236-245. DOI:10.1159/000504132.
- [3] 翟歌,李彪,张森,等.¹⁸F-FDG PET/CT 在胃黏液腺癌中的应用 价值[J].中华核医学杂志,2010,30(1):55-56.DOI:10.3760/

cma.j.issn.0253-9780.2010.01.014.

Zhai G, Li B, Zhang S, et al. The application value of ¹⁸F-FDG PET/CT in gastric mucinous adenocarcinoma [J]. Chin J Nucl Med, 2010, 30(1): 55-56. DOI:10.3760/cma.j.issn.0253-9780. 2010.01.014.

- [4] Jauw YWS, O' Donoghue JA, Zijlstra JM, et al. ⁸⁹Zr-immuno-PET: toward a noninvasive clinical tool to measure target engagement of therapeutic antibodies *in vivo* [J]. J Nucl Med, 2019, 60 (12): 1825-1832. DOI:10.2967/jnumed.118.224568.
- [5] Menke-van der Houven van Oordt CW, McGeoch A, Bergstrom M, et al. Immuno-PET imaging to assess target engagement: experience from ⁸⁹Zr-Anti-HER3 mAb (GSK2849330) in patients with solid tumors[J]. J Nucl Med, 2019, 60(7): 902-909. DOI:10.2967/ jnumed.118.214726.
- [6] Wei W, Rosenkrans ZT, Liu J, et al. ImmunoPET: concept, design, and applications [J]. Chem Rev, 2020, 120(8): 3787-3851. DOI:10.1021/acs.chemrev.9b00738.
- [7] Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC, et al. ⁸⁹Zr-cetuximab PET imaging in patients with advanced colorectal cancer[J]. Oncotarget, 2015, 6(30): 30384-30393. DOI: 10.18632/oncotarget.4672.
- [8] Ulaner GA, Lyashchenko SK, Riedl C, et al. First-in-human human epidermal growth factor receptor 2-targeted imaging using ⁸⁹Zr-Pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer [J]. J Nucl Med, 2018, 59 (6): 900-906. DOI:10.2967/jnumed.117.202010.
- [9] Vosjan MJ, Perk LR, Visser GW, et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate *p*-isothiocyanatobenzyl-desferrioxamine[J]. Nat Protoc, 2010, 5(4): 739-743. DOI:10.1038/nprot. 2010.13.
- [10] Raavé R, Sandker G, Adumeau P, et al. Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for ⁸⁹ZrimmunoPET[J]. Eur J Nucl Med Mol Imaging, 2019, 46(9):

1966-1977. DOI:10.1007/s00259-019-04343-2.

- [11] 王颖,刘申香,童建东. Ki-67 抗原和 P53 蛋白在胃黏液腺癌组 织中的表达及预后分析[J].现代医学,2020,48(11):1413-1419. DOI:10.3969/j.issn.1671-7562.2020.11.011.
 Wang Y, Liu SX, Tong JD. Expression and prognostic significance of Ki-67 antigen and P53 protein in gastric mucinous adenocarcinoma[J].
 Modern Med J, 2020, 48(11): 1413-1419. DOI:10.3969/j.issn. 1671-7562.2020.11.011.
- [12] Lu S, Shi J, Zhang X, et al. Comprehensive genomic profiling and prognostic analysis of cervical gastric-type mucinous adenocarcinoma
 [J]. Virchows Arch, 2021, in press. DOI: 10.1007/s00428-021-03080-y.
- [13] Xu MJ, Johnson DE, Grandis JR. EGFR-targeted therapies in the post-genomic era[J]. Cancer Metastasis Rev, 2017, 36(3): 463-473. DOI:10.1007/s10555-017-9687-8.
- [14] Richard S, Selle F, Lotz JP, et al. Pertuzumab and trastuzumab: the rationale way to synergy[J]. An Acad Bras Cienc, 2016, 88 Suppl 1: 565-577. DOI:10.1590/0001-3765201620150178.
- [15] 王风,郭晓轶,刘特立,等.固体靶 PET 核素⁸⁹Zr 的制备、质量控制和抗体标记[J].中华核医学与分子影像杂志,2020,40(5);294-297. DOI:10.3760/cma.j.cn321828-20191018-00226.
 Wang F, Guo XY, Liu TL, et al. Production and purification of solid target PET nuclide ⁸⁹Zr and its antibody labeling[J]. Chin J Nucl Med Mol Imaging, 2020, 40(5): 294-297. DOI:10.3760/cma.j.cn321828-20191018-00226.
- [16] Lee HJ, Ehlerding EB, Jiang D, et al. Dual-labeled pertuzumab for multimodality image-guided ovarian tumor resection [J]. Am J Cancer Res, 2019, 9(7): 1454-1468.
- [17] van Helden EJ, Elias SG, Gerritse SL, et al. Correction to: [⁸⁹Zr]Zrcetuximab PET/CT as biomarker for cetuximab monotherapy in patients with RAS wild-type advanced colorectal cancer[J]. Eur J Nucl Med Mol Imaging, 2020, 47(10): 2481. DOI: 10.1007/s00259-020-04908-6.

(收稿日期:2021-07-01)

・读者・作者・编者・

关于论文写作中的"志谢"

对给予实质性帮助但不符合作者条件的单位或个人可在文后给予志谢,但必须征得志谢人的书面同意。被志谢者包括: (1)对研究提供资助的单位和个人、合作单位;(2)协助完成研究工作和提供便利条件的组织和个人;(3)协助诊断和提出重 要建议的人;(4)给予转载和引用权的资料、图片、文献、研究思想和设想的所有者;(5)做出贡献又不能成为作者的人,如提供 技术帮助和给予财力、物力支持的人,此时应阐明其支援的性质;(6)其他。不宜将应被志谢人放在作者的位置上,混淆作者 和被志谢者的权利和义务。

本刊编辑部