【摘要】目的 对新诊断前列腺癌(PSA)患者中\(^{18}\)F-胆碱(FCH)摄取的动力学分析，静态分析及临床病理参数进行比较。方法 共纳入61例患者。在行 FCH PET/CT前几日进行前列腺特异性抗原(PSA)测定。从系统的六分仪活组织检查结果中收集 Gleason评分(GS)。FCH PET/CT包含双时相;早期盆腔列表模式采集(注射后0~10 min)和晚期全身采集(注射后60 min)。在晚期采集时使用自动阈值法(最大摄取的40%)绘制感兴趣区的前列腺癌体积，并将其映射到10 min早期静态帧图像和30 s的20个重建帧图像中。使用显像来源的血浆输入函数进行动力学分析。提取早期动力学参数(K1作为输入函数)和静态参数(早期平均标准摄取值(SUV\(_{\text{mean}}\))、晚期SUV\(_{\text{mean}}\)和滞留指数)，并与临床病理参数进行比较。结果 K1与早期SUV\(_{\text{mean}}\)(r = 0.57, P<0.001)和晚期SUV\(_{\text{mean}}\)(r = 0.43, P<0.001)有中度相关性。K1、早期SUV\(_{\text{mean}}\)、晚期SUV\(_{\text{mean}}\)与PSA水平呈中度相关(r=0.36, P = 0.004; r=0.67, P<0.001; r = 0.51, P<0.001)。GS≥4+3组患者的K1高于GS<4+3组的患者(中位数:0.409与0.272 min\(^{-1}\), P <0.001)，静态参数差异无统计学意义。结论 FCH输入函数 K1与前列腺癌患者 GS相关，可以作为一种用于获得肿瘤侵袭性相关信息的无创性工具。

【关键词】\(^{18}\)F-胆碱;正电子发射断层显像;前列腺癌;动力学分析

颈动脉体副神经节瘤的\(^{68}\)Ga-DOTATATE PET/CT 显像

李雪娜(译)

110001 沈阳,中国医科大学附属第一医院核医学科

\(^{68}\)Ga-DOTATATE PET-CT imaging in carotid body paragangliomas Duygu Has Şimşek, Yasemin Şanlı, Serkan Kayumce, Bora Başaran, Ayşe Muğan
Department of Nuclear Medicine, Şişli Hamidiye Etfal Training and Research Hospital, Halaskargazi Street, Şişli, 34371, Istanbul, Turkey
Corresponding author: Duygu Has Şimşek, Email: dr.duygubahs@hotmail.com

【摘要】目的 介绍使用\(^{68}\)Ga-1,4,7,10-四氢杂环十二烷-1,4,7,10-四乙酸(DOTA)-0-Tyr\(^3\)-奥曲肽(DOTATATE) PET/CT 进行颈动脉体副神经节瘤(CBP)基线评估的经验。方法 对5例CBP患者(女4例,男1例,年龄24~73岁)治疗前的\(^{68}\)Ga-DOTATATE PET/CT显像结果进行回顾性分析,对PET/CT图像进行视觉及半定量分析,测最大标准摄取值(SUV\(_{\text{max}}\))。结果 所有患者均为单侧CBP,在PET/CT上表现为\(^{68}\)Ga-DOTATATE高摄取,其中2例患者出现了另外的\(^{68}\)Ga-DOTATATE摄取灶,1例位于甲状腺和大脑额叶,另1例位于骨段和脊柱上部区域。5例患者中,4例患者经手术切除原发瘤,1例患者因出现转移性肿瘤细胞簇而行\(^{177}\)Lu-DOTATATE肽受体放射性核素治疗 (PRRT)。结论 \(^{68}\)Ga-DOTATATE PET/CT显像对于 CBP 的分期,病灶检测及患者管理有价值,能对生长抑素受体的表达进行有效检测,也可为 PRRT 提供依据。

【关键词】颈动脉体副神经节瘤;\(^{68}\)Ga-DOTATATE;PET/CT