18F-FDG PET/CT 双时相显像联合 CT 动态增强扫描对肝上皮样血管内皮瘤的诊断价值

李超伟 房娜 王琦 曾磊 刘诚 于群 新飞 姜要雪 王艳丽
青岛市中心医院、青岛大学分子影像科 266042
通信作者：王艳丽，Email：wangyanli1105@163.com

【摘要】 目的 探讨18F-脱氧葡萄糖(FDG) PET/CT 联合 CT 三期动态增强扫描在诊断肝上皮样血管内皮瘤(HEH)中的价值。方法 回顾性分析 2013 年 11 月至 2018 年 11 月青岛市中心医院的 6 例 [男 2 例，女 4 例，年龄 (41.0±5.6) 岁] 经穿刺病理证实的 HEH 患者的影像学表现。结果 6 例 HEH 患者均为多发病灶，共 30 个病灶，其中 16.7%(5/30) 有包膜回缩征，33.3%(10/30) 有靶征，13.3%(4/30) 有“棒棒糖征”。CT 增强扫描时病灶呈 3 种强化方式：轻度渐进性强化、延迟明显强化以及门脉期出现黑靶征、白靶征。30 个病灶中 20 个 (66.7%) 表现为 18F-FDG 摄取程度高于肝实质，常规影像最大标准摄取值 (SUV_{max}) 为 4.18±0.64，延迟影像 SUV_{max} 为 4.23±0.70，滞留指数为 0.65 (1.88, 4.60); 10 个 (33.3%) 表现为 18F-FDG 摄取与肝实质相似，常规影像 SUV_{max} 为 2.75±0.52，延迟影像 SUV_{max} 为 2.78±0.55。延迟影像后 22 个病灶 SUV_{max} 升高，8 个病灶 SUV_{min} 降低。在 18F-FDG 代谢不均匀的病灶中，代谢相对较高的部位也是 CT 增强峰值较高的部位；代谢较均匀病灶的 CT 增强方式也较均匀。2 例患者同时伴有双肺转移。结论 18F-FDG PET/CT 双时相显像联合 CT 三期动态增强扫描有助于 HEH 的准确诊断，同时可显示肝外转移灶。

【关键词】 血管内皮瘤，上皮样；肝；正电子发射断层显像术；体层摄影术；X 线计算机；脱氧葡萄糖

DOI: 10.3760/cma.j.cn321828-20190925-00210

Diagnostic value of 18F-FDG PET/CT combined with integrated contrast-enhanced CT for hepatic epithelioid hemangioendothelioma

Li Chaowei, Fang Na, Wang Qi, Zeng Lei, Liu Cuuyi, Jin Fei, Jiang Wenwen, Wang Yanli
Department of Molecular Imaging, Qingdao Central Hospital; Qingdao University, Qingdao 266042, China
Corresponding author: Wang Yanli, Email: wangyanli1105@163.com

【Abstract】 Objective To explore the value of 18F-Fluorodeoxyglucose (FDG) PET/CT combined with integrated contrast-enhanced CT on the diagnosis of hepatic epithelioid hemangioendothelioma (HEH). Methods Six patients (2 males, 4 females, age: 41.0±5.6 years) histopathologically confirmed to be HEH in Qingdao Central Hospital between November 2013 and November 2018 were retrospectively analyzed. All patients underwent 18F-FDG PET/CT dual-phase imaging and three-phase dynamic enhanced scanning with integrated CT. Characteristics of 18F-FDG PET/CT and contrast-enhanced CT images were classified and analyzed. Results All 6 patients had multi-lesions (30 lesions in total). The capsule retrac tion sign was found in 16.7% (5/30) lesions, target sign was found in 33.3% (10/30) lesions, and "lollipop sign" was found in 13.3% (4/30) lesions. There were three ways of enhancement showed by CT: mild progressive enhancement, delayed enhancement, and black target sign/white target sign in the portal phase. Among the 30 lesions, 66.7% (20/30) had higher 18F-FDG uptake than liver parenchyma, with maximum standardization uptake value (SUV_{max}) of 4.18±0.64 during routine imaging and 4.23±0.70 during delayed imaging, and the retention index was 0.65 (1.88, 4.60). The rest 33.3% (10/30) showed similar 18F-FDG uptake to liver parenchyma, with SUV_{max} of 2.75±0.52 during routine imaging, and 2.78±0.55 during delayed imaging. The uptake of 18F-FDG increased with time in 22 lesions and decreased in 8 lesions. In the metaboli cally heterogeneous lesions, the relatively high-metabolization site was also the site with higher peak enhancement; in the lesions with uniform metabolism, the CT enhancement was also uniform. Bilateral pulmonary metastases were found in 2/6 patients. Conclusion 18F-FDG PET/CT dual-phase imaging combined with CT three-phase dynamic enhanced scanning is helpful in accurate diagnosis of HEH and could show extrahepatic metastases.

【Key words】 Hemangioendothelioma, epithelioid; Liver; Positron-emission tomography;
肝上皮样血管内皮瘤（hepatic epithelioid hemangioendothelioma, HEH）是一种罕见的血管源性低度恶性肿瘤，发病率低（<0.1/10 万）[1]。HEH 起病隐匿，其临床表现及实验室检查结果缺乏特异性，易被误诊为其他肝肿瘤。近年 CT、MRI 或 PET/CT 等单一影像学检查在诊断 HEH 方面的应用有所增加，但缺乏特征性的诊断症状。作者回顾性分析了病理证实的 6 例 HEH 患者的资料，研究其 F-18 脱氧葡萄糖（fluorodeoxyglucose, FDG）PET/CT 双时相显像联合 CT 三维动态增强扫描的影像学特点，以更好地诊断 HEH。

资料与方法

1. 资料与方法。本研究符合《赫尔辛基宣言》的原则。回顾性分析本院 2013 年 11 月至 2018 年 11 月经穿刺病理证实的 6 例 HEH 患者的临床及影像资料。6 例患者均行 F-18-FDG PET/CT 双时相显像和同机 CT 动态增强扫描。6 例患者中男 2 例、女 4 例，年龄为 34~49（41±5.6）岁；临床表现为主诉 2 例，黄疸 1 例，1 例既往有胃溃疡病切术史；实验室检查示患者肝功能均正常，甲胎蛋白、癌胚抗原、糖类抗原（carbohydrate antigen, CA）19-9 均为阴性。

2. 检查方法。采用德国 Siemens Biograph 16 PET/CT 仪，F-18-FDG 由美国 RDS III 型回旋加速器及 FDG4 化学合成模块生产，产物 pH 值 6.0~7.0，放化纯>95%。患者检查前禁食 4~6 h，空腹血糖控制在 1.1 mmol/L 以下。按患者体质量经静脉注射 F-18-FDG 5.55~7.40 MBq/kg，注射后患者避光，平静休息 60 min，然后行全身 PET/CT 显像。PET/CT 扫描范围为颅顶至股骨中上段，CT 扫描参数为：电压 120 kV，电流 50 mA，0.5 s/周，螺距 0.75，矩阵 512×512，用三模式采集 PET 图像，采集 6~7 个床位，3 min/床位。PET 图像经 CT 扫描行衰减修正，图像采用有序子集最大期望值迭代法（ordered subsets expectation maximization, OSEM）重建，迭代次数为 4，子集为 8，获得横断面、矢状面、冠状面断层图像。于注射 F-18-FDG 后 2~2.5 h 行延迟显像，以肝为中心采集 1 个床位。在病灶放射性摄取最浓聚的位置勾画感兴趣区（region of interest, ROI），计算最大标准摄取值（maximum standardized uptake value, SUV_{max}）和滞留指数（retention index, RI）。RI = (延迟 SUV_{max} - 早期 SUV_{max}) / 早期 SUV_{max} × 100%。

3. 图像分析。由 3 位副高级职称的 PET/CT 诊断医师各自独立观察 PET/CT 及增强 CT 图像，分析肝病灶大小、密度、形态、分布特点、常规及延迟显像 FDG 摄取程度、CT 强化方式及肝外有无异常影像表现等，意见不一致时经协商讨论取得一致。根据 Okazumi 等[2]提出的标准将病灶的 F-18-FDG 摄取程度分为 3 型：I 型，病灶 F-18-FDG 摄取程度高于周围肝实质；Ⅱ型，病灶 F-18-FDG 摄取程度与周围正常肝实质相似；Ⅲ型，病灶 F-18-FDG 摄取程度低于周围肝实质。

4. 统计学处理。采用 SPSS 17.0 软件进行数据处理，符合正态分布的定量资料以 x±s 表示，不符合正态分布的定量资料以 M(P_{25}, P_{75}) 表示。
的匹配比较。在18F-FDG代谢不均匀病灶中,代谢相对较高的部位也是CT增强峰值较高的部位（图2G~2I）;在18F-FDG代谢较均匀的病灶中,CT增强方式也比较均匀。3例多发病灶间增强方式不同的患者,其多个病灶的代谢方式也不相同（I型和Ⅱ型并存）。

4. 病理表现（图3）。HEH病变内血管结构不清,由排列成短索状和小巢状的肿瘤细胞组成,部分基质呈浅蓝色黏液样,未见核分密象,散在少量肝细胞（图3A）。免疫组织化学检测CD31阳性6例（图3B）,CD34阳性5例,第Ⅷ因子相关抗原（factor VIII related antigen, FⅧ-Rag）阳性2例。

图3 HEH患者（男,40岁）病理图。A. 光学显微镜下见肿瘤细胞排列成短索状和小巢状结构,部分基质呈浅蓝色黏液样,未见核分密象（HE×200）;B. 免疫组织化学检测肿瘤细胞膜CD31阳性[链霉素亲和素-过氧化物酶(ABC)法×200]

讨 论

上皮样血管内皮瘤（epithelioid hemangioendothelioma, EH）是一种罕见的血管源性恶性肿瘤;EH多发生于软组织、肺、骨、脑及小肠等脏器,原发于肝者（HEH）罕见[3]。HEH的恶性程度介于血管瘤和血管肉瘤之间,具有上皮样细胞、血管内皮样细胞及树突细胞的组织学特点[4];中年女性好发,发病机制不明确。HEH起病比较隐匿,临床表现及实验室检查缺乏特异性,易被误诊为其他肝肿瘤。对于肝广泛多发病灶者,肝移植是最好的治疗选择,该法可使患者5年生存率达55%[5]。本研究中6例HEH均为多发病灶患者,无法行切除术,诊断明确后均行放化疗、经动脉化疗栓塞治疗。HEH的影像检查上常多发病灶,以外周分布为主[6~7],本研究中6例患者均为多发型,CT平扫表现为低密度结节灶,边界尚清,密度尚均匀,有文献报道20%的病灶有钙化[x],但本研究中未见钙化征象,可能与纳入研究的例数少有关。本研究CT动态增强扫描显示,HEH病灶呈多种强化方式,可为轻度渐进性强化;可为动脉期外周明显强化,延迟期位于中央的纤维成分出现强化;还可表现为门脉期出现黑靶征与白
靶征，与 Kim 等 [9] 的研究报道一致。病灶黑靶征表现为靶心低密度影，自内向外密度呈低、低、高改变；白靶征表现为靶心高密度影，自内向外密度呈高、低、高改变。黑靶征病灶中心部分以稀疏或透明质为主；白靶征病灶中心部分为富细胞性，在其他疾病中罕见，对诊断 HEH 具有重要意义。本研究中 33.3% (10/30) 的病灶出现靶征，有同一患者不同时间的增强扫描图像分别出现黑靶征和白靶征，这可能与黏液变性和富细胞性交替出现有关 [6]。肝包膜回声是 HEH 的一个重要影像学征象，其病理学基础可能是：肿瘤内含较多的纤维成分，纤维收缩牵拉肝包膜。本研究中 16.7% (5/30) 的病灶出现该征象，此征象可见于其他病变，如慢性炎症反应、肝内胆管癌等，因此其不能作为诊断 HEH 的特异性征象。HEH 的另一重要征象是“棒棒糖征”，其组成为：边界清楚的肿块内及在组织学上闭塞的静脉（肝静脉或门静脉），本研究中 13.3% (4/30) 的病灶出现该征象。“棒棒糖征”罕见于其他肝肿瘤，可以作为诊断 HEH 的特异性征象 [10]。

有关 F-FDG PET/CT 显像对 HEH 的诊断及治疗评价的文献报道较少，其中部分显示 F-FDG PET/CT 双时相显像对 HEH 的诊断价值不同 [11]，在本组病例的 30 个病灶中，F-FDG PET/CT 显像示 20 个病灶放射性摄取高于周围肝实质摄取，10 个病灶 F-FDG 摄取与肝实质摄取相似；注药后 2 延迟显像示 22 个病灶 SUV_max 较常规显像升高，8 个病灶 SUV_max 降低，肿瘤与肝本底的对比度增加，病灶显示得更清晰。

本研究结果显示，F-FDG PET/CT 摄取方式与 CT 增强方式有相匹配之处；在代谢不均匀的病灶中，代谢相对较高的部位也是增强峰值较高的部位；在代谢均匀的病灶中，CT 增强方式也比较均匀。HEH 肿瘤内细胞与基质成分多变，CT 增强高密度区代表了肿瘤细胞高生长活跃的部位，低密度区代表了成熟硬化区——血管少的部位 [14]，与文献报道的 F-FDG 代谢相对较高的区域是 HEH 临床高度区域，代谢相对较低的区域为低细胞基质、透明质区域相符 [13]，这可能是 HEH 病灶的 F-FDG PET/CT 摄取方式与 CT 增强方式相匹配的原因。本研究还发现，同一患者多发病灶的代谢方式可不相同，增强方式亦不相同，可能的原因是多发病灶中肿瘤细胞数不同，而肿瘤细胞分散在从稀疏的透明质到丰富的硬化质不等的基质中，即组织学成分不同。

HEH 的诊断在常规影像学观察上常与其他疾病相混淆，需鉴别的常见肿瘤如下：(1) 胆管细胞癌。胆管细胞癌 CT 增强扫描表现为肿瘤早期轻度强化，随后呈不均匀延迟强化，与 HEH 强化方式相似，但多数胆管细胞癌可引起胆管扩张，且 PET/CT 大部分呈明显 F-FDG 摄取增高 [16]。 (2) 肝转移癌。肝转移癌也可呈 HEH 的包膜回缩征、黑靶征，但肝转移癌不具本 HEH 的白靶征、“棒棒糖征”，且 PET/CT 显像呈明显 F-FDG 摄取增高，PET/CT 诊断肝转移癌的灵敏度为 96.3%，特异性为 99.0% [16]。 (3) 肝细胞肝癌 (hepatocellular carcinoma, HCC)。HCC 临床常有乙肝、肝硬化病史；PET/CT 显像表现可呈无、轻度或明显 F-FDG 摄取增高 [17]，但 CT 增强扫描示动静脉期呈明显斑片状、结节状早期强化，门静脉期强化程度迅速下降，"快进快出" 的 CT 增强表现有助于诊断该病。(4) 肝血管瘤。肝血管瘤典型 CT 增强方式为动脉期病灶边缘结节样、簇样明显强化，门静脉期延迟期对比剂逐渐向内填充，呈 "快进慢出" 表现，PET/CT 显像一般无 F-FDG 摄取增高。

综上所述，HEH 的影像学表现具有一定特征，肝多发病灶 F-FDG 摄取或略高于肝实质摄取。F-FDG PET/CT 双时相显像联合 CT 三期动态增强扫描可对 HEH 进行诊断及鉴别诊断，且可进行分期；在同-患者多发病灶中可出现多种强化方式，且同一患者多发病灶中同时出现等或略高于肝实质的放射性摄取。但本组病例数较少，需要后期进行大样本量研究加以验证。

利益冲突 所有作者均声明不存在利益冲突

参考文献

(收稿日期:2019-09-25)